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Abstract. Two aspects of the multidimensional bisection algorithms for the global optimisation of 
Lipschitz continuous functions are investigated. Firstly, for several test functions we examine the 
numerical performance of the deepest point algorithm and two acceleration procedures. Secondly, we 
phrase the branch and bound framework of Horst and Tuy in terms of covers, and show the algorithms 
to be included in this framework. A result of Basso on the convergence of localisations is extended to 
higher dimensions. 
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1. Introduction 

A generalisation of the familiar "interval-halving" bisection method to higher 
dimensions was introduced in [10]. The method can be viewed as a mechanism for 
finding all the global minima of a real-valued Lipschitz continuous function over a 
compact domain in R n. Questions about the convergence, acceleration and 
optimality of the range of algorithms suggested were discussed in [9]. An extreme 
version generalises the Piyavskii-Shubert algorithm, [7, 8], to higher dimensions 
in a manner complementary to that of Mladineo, [3]. The algorithms can be 
coded using a particularly simple data structure, possess certain minimax prop- 
erties, and can guarantee convergence to all global minima. 

This paper explores two aspects of these multidimensional bisection (MB) 
algorithms: their numerical performance, and their relationship to branch and 
bound algorithms. In the interests of completeness we begin in w with an 
overview of the algorithms, at both an informal and a formal level. In w we 
address the specific question "How do the algorithms perform?" Numerical 
results are presented for three standard test functions, as well as for two functions 
drawn from a new non-differentiable family of test functions. Two acceleration 
methods are considered. Together they bring the algorithm closer to that of 
Mladineo, while retaining the simplicity of the simplex-based multidimensional 
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bisection algorithm. In w we address the general question "How are the 
algorithms related to others in the literature?" The question is answered by 
showing that multidimensional bisection algorithms are included in a modification 
of the branch and bound framework of Horst and Tuy [6]. We conclude the paper 
in w with a result which simplifies and extends the results of Basso [2]: a strategy 
for choosing evaluation points is presented which ensures convergent localisa- 
tions. 

2. A Review of Multidimensional Bisection 

Our problem is the following: given f :  Rn--> R and K a compact domain in R n, 
find 

m i n f ( x ) ,  f o r x E K  

together with the points in K where this minimum is realised. We assume 
f @ L(M), the set of Lipschitz continuous functions, with Lipschitz constant M. 

Global optimisation algorithms which rest on the Lipschitz assumption use 
variations on two simple facts. Let 

e =  {(x, y): y>~Mllxil, for x e R "  and y E R }  

be the cone at the origin with axis of symmetry the y-axis and spherical 
cross-section of radius one at height M, and suppose that (x, y) lies on the graph 
of f over K. Then 

(1) No point inside (x, y) - ff lies on the graph of f,  and 
(2) No point above (x, y) can be a global minimum of f. 

In the multidimensional bisection algorithm we approximate ff by a cone V with a 
simplex base, as shown in Figure 1. With G replaced by V, statements (1) and (2) 
remain true. Using Y in place of if, an algorithm can be set up which proceeds in a 
very simple way. Furthermore, it can be viewed as a direct generalisation of the 
bisection method (see [10]). We firstly give a brief informal description of the MB 
algorithms, then follow it with a formal description, relegating the more technical 
details to Appendix 1. 

2.1. AN INFORMAL REVIEW 

At  the end of each iteration, the algorithm brackets all global minima over K in a 
union of similar simplexes (known as standard simplexes) in R n+l, each simplex 
being a translate of a cap of the cone V. Figure 2 shows such a bracket (or system) 
for a function of two variables. All simplex tops, shaded in the figure, lie at the 
height of the least evaluation to date. 

How does this come about? At the outset, via n + 1 function evaluations, we 
are able to bracket all global minima over K in a standard simplex, T 0. Later  
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Fig. 1. The cone, 6~, with spherical cross-section can be approximated by a cone, 
V, with simplicial cross-section. 

i terations begin with a set of function evaluations. Each evaluation allows us to 
r emove  the interior of -V, with apex moved  to the evaluation point on the graph 

of f,  f rom every simplex in the system. Here  we are using proper ty  (1) above. 
When  such an inverted cone is removed from a standard simplex it has the 
fortuitous effect of leaving at most n + 1 standard simplexes, of smaller height 

than the original s tandard simplex. The idea is illustrated for n = 2 in Figure 3. 
This process is te rmed simplex reduction. All such simplex reductions we te rm 
system reduction, ~.  Following system reduction, the system is t runcated at the 

height of  the lowest evaluation to date, a process termed system elimination, ~. 
Thanks  to proper ty  (2) above,  this removes ,no global minima. We are then ready 

for  the next iteration. 

Fig. 2. Overlapping standard simplexes forming a bracket for the global minima, 
the situation at the end of each iteration. 



340 ZHANG BAOPING ET AL. 

"'"',, ] /.':"" 
"i' 
I 

Fig. 3. Simplex reduction when n = 2: three small standard simplexes are left 
when the removal cone is withdrawn from the large standard simplex. 

I f  we  deno te  the system at the k th  i terat ion by 9~ then we can summar ize  the 

a lgor i thm as: 

A L G O R I T H M  2.1. (Mult idimensional  Bisection). 

Initial step: F o r m  5~ the initial system. 

Iterative step: Let  6ek§ ~ = ~ ( ~ ( ~ k ) ) .  R e p e a t  until a s topping cri terion is satisfied. 

2.2. A FORMAL REVIEW 

We p roceed  now to a formal  descript ion of  Algor i thm 2.1. Let  { U a , . . . ,  un+l} 

compr ise  the unit  vectors  f rom the origin to the vertices of  some regular  simplex, 

wi th  cent roid  the origin, in R n. Thus  u 1 + �9 �9 �9 + u ,+  1 = 0 and u k �9 u t = - 1 / n  for  all 
distinct pairs k and l. Le t  V be the cone in R "+1 with apex the origin and 

c ross -sec t ion  c o { u 1 , . . . ,  u ,+ l}  at height  M along the (n + 1)st axis, where  " c o "  
deno tes  the  convex hull. Formal ly ,  

V =  pos{(uk,  M ) :  k = 1 , . . . ,  n + 1} , 

where  " p o s "  denotes  all positive l inear combinat ions.  The  following concepts  

allow us to describe the algorithm. 

D E F I N I T I O N  2.1. (Basic ideas). 
1. A standard simplex in R n+l is a t ranslate of  a cap of  the cone V so has the fo rm 

r ( x , y , h ) = c o  x ,y) ,  X+--~uk, y + h  : k = l , . . . , n + l  , 
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where (x, y) E R n+l is the apex, and h E R the height. By the top of T(x, y, h) we 

shall mean the facet of T(x, y, h) opposite the apex. 
2. A system o f  simplexes (or system) 6P in R n+l is (a) a finite set 3- of standard 
simplexes, plus (b) a point a in R n+l, lying in a lowest top of the system. 
3. A uniform system is a system 5e in which all tops lie in the same hyperplane of 
R n+l. Alternatively, yj + hj = Yk + hk for all Tj, T k in 3-. 
4. The  variation of a system 6e, V(fe), is the difference between the highest and 
lowest points in the system. That  is, 

V(6 e) = max{yj + hi) - m!n (y j} .  
1 ! 

5. A standard domain in R n has the form c + rU, where c E R n, r/> 0 and U is the 

vector sum U a + - - .  + Un+ 1, where U k is the line segment from 0 to u k. 

A standard domain is a line segment when n = 1, a hexagon when n = 2 and a 
rhombic dodecahedron,  the honeycomb cell, when n = 3. For  this reason we 
sometimes call MB algorithms "beesect ion" algorithms. 

T H E  I N I T I A L  S Y S T E M  

Given a standard domain, H = c + rU, we can set up an initial standard simplex, 
To, which brackets all global minima over H,  as follows: 

(i) evaluate f at the n + l  "dual"  vertices of H,  {v k = c - r u  k : k =  
1 . . . .  , n + l } ,  

(ii) remove the cones (v k, f(Vk) ) - V  from R n+x, for each k, and 
(iii) truncate R n+x at the level of the lowest evaluation. 

This process yields an initial system in a natural way. That  the initial system 
contains all global minima over H is proven in ([10], Proposition 6.1). A detailed 
description of the initial system is given in Appendix 1. 

SIMPLEX AND SYSTEM REDUCTION 

Simplex reduction is the key to the algorithm. Given a standard simplex, 
T = T(x, y, h), an evaluation of f at x allows us to remove the interior of 
(x, f (x ) )  - V from T and truncate T at height f (x) ,  leaving a region which is again 
a union of at most n + 1 smaller standard simplexes. If (x, f (x) )  is on or above the 
top of T we term it an upper  reduction, while if (x, f (x) )  is below the top of T we 
term it a lower reduction. We use the notation 3- for the set of simplexes 
comprising the reduction of T. For  a detailed description of 3-we refer the reader  
to Appendix 1. 

In system reduction we reduce some of the simplexes in the current system. In 
the following definition, J indexes all simplexes in the system, and I indexes the 
simplexes to be reduced. 



342 ZHANG BAOPING ET AL. 

DEFINITION 2.2. (System reduction). Let 9 ~  (3-, a) be a uniform system 
inside the initial simplex To, where J - =  { Tj}jsj ,  and let I be a non-empty subset 
of  J. A reduction of 5e is a system ~(O ~ -- (if-', a ' )  where 

J- '  = L_J ~- U { Tj}, where ~ is the reduction of simplex Tj,  
j ~ I  j~J\ l  

a, if no lower reductions occur, else 
a '= [ (x, f(x)) such that f(x) = minj~i{f(xj) ) . 

In order to ensure that the algorithm converges, we must make the following 
assumption: 

ASSUMPTION 2.1. The global minimum o f f ,  over the projection of  the top of  T O 
onto R", occurs in H. 

With this assumption ([10], Proposition 4.1) shows that no global minima are 
removed during a system reduction. In [10] we analysed the case where I = J. Of 
particular interest in this paper is the case where I picks out the deepest simplex 
in the system at each stage, so III -- 1. In w of this paper, stimulated by a result of 
Basso, an algorithm for which 1 <~ III I11 is analysed. 

SYSTEM ELIMINATION 

Following a system reduction, parts of some simplexes may lie above the lowest 
function value recorded. We tighten up the system in the following way: 

DEFINITION 2.3. (System elimination). The eliminated system associated with 
the system 5e = (J-, a) inside T O is ~(Se) = (if-', a) where 

~-' = { T A P - :  T ~ f f } ,  

with P -  the closed half-space of R "§ below a. 

Again, no global minima are removed during this process ([10], Proposition 4.2). 
This completes our formal description of the three critical aspects of Algorithm 
2.1, namely the construction of the initial simplex, and the processes of system 
reduction and system elimination. We refer to the reduction of the I simplexes, 
together with elimination, as a full iteration. Further illustrations showing the 
ideas underlying the algorithm may be found in [9] and [10]. 

3. Performance 

The character of the algorithm depends upon the choice of simplexes reduced in 
an iteration. In [10] all simplexes were reduced, so ensuring that the variation of 
the system was reduced by at least a factor of n/(n + 1) at each full iteration. In 
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[9] it was shown that the reduction of the deepest simplex at each iteration is 
sufficient to ensure that the variation converges to zero. This choice creates the 
multidimensional bisection analogue of the strategies employed by Piyavskii- 
Shubert and Mladineo. 

No matter what reduction strategy we employ, there are two immediate failings 
of the algorithm: 

(i) For n greater than one, an evaluation over one simplex frequently gener- 
ates a removal cone which is capable of removing material from neighbour- 
ing simplexes. The algorithm, as described so far, does not effect this 
action, which we term complete reduction. 

(ii) In reality, we can remove a spherically based cone at an evaluation point. 
Our simplex based cone merely approximates this cone, and the approxi- 
mation worsens as n increases. A method is needed which retains the 
simplicity of simplexes, yet utilises the power of the spherical removal. 

An implementation of the deepest point algorithm has been written in m a t  1 a b  
which runs the raw "deepest point" algorithm (A), and either or both of two 
acceleration schemes which remedy the two points just mentioned. 

In order to understand the idea behind the complete reduction algorithm (AC), 
it is necessary to recognize that the notion of simplex reduction introduced in the 
previous section can be considerably generalised. So far we have only reduced a 
simplex when the evaluation occurs over its apex (or deepest point). This 
restriction is not necessary. Let z be any point in R n§ Given a standard simplex 
T, z - V  can be used as a removal cone resulting in T~(z - V )  being a union of at 
most n + 1 standard simplexes. Figure 4 illustrates this statement. The r e a l : l a b  
implementation of the algorithm is a "dual"  implementation, in which each 
simplex is held by means of the dual coordinates of the sloping facets of the 
simplex. The dual coordinate of a facet is the inner product of any vector from the 
origin to a point on the facet with a unit vector orthogonal to the facet. This 
representation of the simplex allows us to cope with the technical problems of 
complete reduction in a straightforward fashion [1]. 

The spherical reduction algorithm (A s ) was described in detail in [9]. We 
provide a brief review now. The central idea is illustrated for the case where n = 2 
in Figure 5. Pictured in the figure is the triangular top T of T(x, y, h) and the 
cross-section D' of the removal cone (x, f ( x ) ) - V  through the plane of the 
simplex top. We are really permitted to remove (x, f ( x ) ) -  if, a much larger 
volume, whose cross-section is shown as S in the diagram. It is now clear that we 
can remove a simplex based cone at an effective evaluation point higher than 
(x, f(x)). Its cross-section through the plane of T is shown as D, evidently the 
largest simplex dually oriented to the top of T(x, y, h) whose intersection with T 
is contained in S. The technical details of spherical acceleration are presented in 
Appendix 1. 

Spherical acceleration utilises the power of the spherically based removal cone, 
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Fig. 4. Simplex reduction when the evaluation is not over the apex. Note that 
standard simplexes of unequal size are left after such a reduction. 

~ T 

Fig. 5. The basis of spherical reduction: if T were the top of a simplex in the 
system, and S the cross-section of the spherical removal cone, then we could 
effectively remove a simplex based cone with cross-section D from the simplex 
with top T. 
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but only for removal from the simplex over which the evaluation was made. This 
acceleration can be combined with complete reduction to extend to all simplexes 

which intersect with the spherically based removal cone. We term this complete 
spherical reduction (ACS), a technique we now describe. An evaluation over a 
point x determines a fixed spherically based removal cone. Consider a simplex in 
the system which meets this removal cone. Denote the top of this simplex, shaded 
in Figure 6, by T. Construct a dummy standard simplex, with top T', the smallest 
centered on x and containing T. Spherical reduction on this dummy simplex 
would generate a simplex based removal cone at an effective evaluation point 
higher than (x, f(x)). Its cross-section at the level of the tops is shown as D in 
Figure 6. Now remove this cone from the original simplex, as in the complete 
reduction procedure. This combined process allows us to remove more than 
would spherical or complete reduction alone. 

We report now on the relative performance of the four schemes, using three 
test functions which are already in the literature, and two members of a family of 

test functions suggested by recent work of Mladineo [4]. All are described in the 
appendix. The Mladineo functions have the appearance of upside-down mountain 
ranges, being non-differentiable at the global minimum. Different runs were 
created by varying the location of the first evaluation following formation of the 
initial simplex. Thereafter the deepest point algorithm was used. Each run is 
terminated after 100 function evaluations. For each function we report the 
average, over a number of runs, of (i) the location of the least evaluation, and (ii) 
the ratio of the final variation to the initial variation. 

T, 

X 

D 

T 

Fig. 6. The basis of complete spherical reduction. 



346 Z H A N G  B A O P I N G  ET AL.  

Table I. For each test function and algorithm type the table shows the true minimum, and 
average over several runs of the computed minimum and relative variation (the ratio of the 
final variation to the initial variation). Each run was terminated after 100 function 
evaluations. The differing number of runs within RCOS is due to the presence of more than 
one global minimum; we selected only the runs which converged to the specified global 
minimum 

True minimum Algorithm minimum Rel. yarn No. runs 

GOLDPR 
A (0.5014, 0.2565, 0.0000) 0.1788 10 

(0.5000, 0.2500, 0.0000) A c (0.4681, 0.2681, 0.0000) 0.1475 10 
A s (0.5014, 0.2565, 0.0000) 0.1788 10 
A c` (0.4687, 0.2681, 0.0000) 0.1272 10 

RCOS 

(0.5428, 0.1517, 0.0013) 

(0.1239,0.8183,0.0013) 

(0.9617,0.1650,0.0013) 

A (0.5436,0.1618,0.0035) 0.1690 7 
A c (0.5281,0.1553,0.0032) 0.1240 4 
A s (0.5436,0.1618,0.0035) 0.1731 7 
A C' (0.5281,0.1553,0.0032) 0.1242 4 

A (0.1308,0.7840,0.0027) 0.1695 3 
A c (0.1361,0.7558,0.0029) 0.1259 5 
A s (0.1308,0.7831,0.0027) 0.1695 4 
A cs (0.1361,0.7558,0.0029) 0.1242 5 

A (0.9423,0.1446,0.0026) 0.1644 1 
A ~ (0.9665, 0.1805, 0.0035) 0.1241 2 
A s (0.9423, 0.1446, 0.0026) 0.1644 1 
A c' (0.9665,0.1804,0.0035) 0.1231 2 

FUNCT2 

(0.1427,0.9757,-3.0000) 
A (0.1249,0.9629,-2.9916) 0.0855 10 
A c (0.1086,0.9737,-2.9909) 0.0654 8 
A s (0.1285, 0.9745, -2.9927) 0.0790 10 
A cs (0.1286,0.9699,-2.9940) 0.0588 8 

MLADINEO(2, 3) 

(0.0000,0.8000,-1.7321) 
A (0.0002, 0.8010, -1.7284) 0.0068 10 
A c (0.0000,0.8001, -1.7317) 0.0004 10 
A s (0.0000,0.8005,-1.7296) 0.0025 10 
A cs (0.0000,0.8000,-1.7320) 0.0000 10 

MLADINEO(4, 3) 

(0, 0, 0, 0, 0.8, -1.7321) 
A (0.01, -0.01, 0.00, 0.73, -1.58) 0.3755 13 
A c (0.01, -0.01, 0.00, 0.75, -1.60) 0.2997 13 
A s (0.01, -0.01, 0.00, 0.73, -1.58) 0.3680 13 
A cs (0.01, -0.01, 0.00, 0.75, -1.60) 0.2696 13 

N o t e  t h a t  t h e  d e v i a t i o n  f r o m  t h e  t r u e  g l o b a l  m i n i m u m  is a v a i l a b l e  by  c o m p a r i n g  

t h e  f inal  c o m p o n e n t  o f  t h e  l o c a t e d  p o i n t  w i t h  t h e  f inal  c o m p o n e n t  o f  t h e  t r u e  

p o i n t  in  T a b l e  I.  

REMARKS 

( i )  T h e  a l g o r i t h m s  w o r k  bes t  fo r  f u n c t i o n s  w h e r e  t h e  m i n i m a  a re  w e l l - d e f i n e d ,  

such  as F U N C T 2  a n d  M l a d i n e o ( 2 ,  3)  a n d  (4,  3) .  T h e  e f f e c t i v e n e s s  o f  s i m p l e x  

r e d u c t i o n  in such  cases  causes  t h e  s y s t e m  v a r i a t i o n  to  r e d u c e  r ap id ly .  
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(ii) For functions which are relatively fiat over much of a neighbourhood around 
the global minimum the variation is slow to reduce. Thus while we may find 
a good solution early, it takes a lot of later evaluations to confirm that it is 
successful. G O L D P R  and RCOS exhibit this behaviour. 

(iii) The algorithms are converging to a global minimum, but it is evident by 
examining absolute error in Table I that they are more successful at finding 
the value of the function at the global minimum (the final coordinate) than 
the location of the global minimum (the first n coordinates). 

(iv) Complete reduction produces roughly a 25% reduction in variation, though 
substantially more when the global minimum is sharply defined, as in 
Mladineo(2, 3). Spherical reduction makes almost no difference for functions 
which are fiat around the global minimum, but does offer an improvement 
for FUNCT2 and Mladineo(4, 3), and a marked one for Mladineo(2, 3). 
Recall that spherical reduction comes into its own only when evaluations lie 
well above the simplex top. Note that A cs is best overall. 

(v) Accelerated methods require fewer function evaluations to reach a given 
variation, but the overheads per function evaluation are higher. For our 
current implementation the overall overheads to reach a given accuracy, 
measured in floating point operations, do not change very much from A to 
A cs. No effort has been made so far, however, to use a streamlined data 
structure. An efficient implementation in C is planned. This will reveal the 
extent to which acceleration methods can reduce the overheads (as well as 
the function evaluations) involved in reaching a given accuracy. 

(vi) The change from one run to the next in the located algorithm minimum and 
in the relative variation is illustrated by the following representative selection 
of means and standard deviations: 

G O L D P R  
A (0.5014_+0.0480, 
MLADINEO(2 ,  3) 
A (0.0002 + 0.0015, 

0.2565 -+ 0.0223, 

0.8010 _+ 0.0024, 

0.0000 -+ 0.0000); 

-1.7284 -+ 0.0032); 

0.1788 --+ 0.0120 

0.0068 --- 0.0032 

4. Context 

In their text [6], Horst and Tuy present a general framework for "branch and 
bound"  global optimisation algorithms. In an earlier paper [5], these authors 
showed that the algorithms of Pinter, and Zheng and Galperin are encompassed 
by this general framework. Somewhat surprisingly, the algorithm of Mladineo is 
also shown to sit beneath this umbrella, but the method used is not completely 
natural. 

Our aim in this section is to slightly broaden the framework so that it more 
readily encompasses algorithms such as those discussed in this paper and their 
generalisation described in [1]. Motivation to alter the branch and bound frame- 
work springs from the observation that in the Piyavskii-Shubert algorithm, and 
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a) E -11: ]1- 31- -1 
b) E ]E -1 
Fig. 7. After three evaluations (shown as heavy dots) the partition determined by 
the removal cones (used in [5]) is shown in (a), and the cover using simplex tops 
in (b). 

multidimensional bisection, the natural cover at any stage is the projection onto 
the domain of the simplicial tops of the possibly overlapping simplex brackets.  

The  idea is illustrated in Figure 7, for the case where n = 1. We acknowledge that 
every finite parti t ion is a finite cover, and moreover  that every finite cover gives 
rise to a (not necessarily unique) finite partition. The  language of covers, 
however ,  allows us to express multidimensional bisection as a branch and bound 

algorithm more  conveniently than the language of partitions. 

4.1. A NEW BRANCH AND BOUND FRAMEWORK 

We now present  the branch and bound f ramework of Hors t  and Tuy in the 
language of covers, rather  than partitions. We follow the format  in ([6], pp. 
114-116). A set C in R n is te rmed feasible if C f ' / K  ~ tt, and uncertain if it is not 
known whether  it is feasible. We adopt  the convention that the minimum taken 

over  an empty  subset of R equals +o0. 

Initial step (k = 0): The algorithm begins with a compact  set Co covering K, or a 
subset of K where min f(K) is realised. Set cr o = (Co}, the initial cover. 
Associated with C O are bounds/30 =/3(Co) and % = a(Co) such that 

/30 ~< min f(K) ~< % = min f(Sco ) 

where Sco is the possibly empty set of evaluation points made  in K. If  a o < 0% 
then choose x ~ such that  f(x ~ = %. If % - / 3  o ~< e, then stop, else proceed to 
the iterative step. 

Iterative step (k = 1, 2 , . . . ) :  At  the outset we have the finite cover of dosed  sets, 
q~k-1, of the subset of C o still of interest. For  every C E ~k-1 we have bounds 
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/3(C) and a ( C )  satisfying 

/3(C) ~< min f ( C  fq K) ~< or(C) = min f ( S c )  if C is known to be feasible, 
and /3(C)  ~< min f ( C )  if C is uncertain 

where S c is the possibly empty set of evaluation points in C f3 K, and the 
overall lower and upper bounds are defined as 

/3k_ 1 = min{/3(C):  C E Cr ak_ 1 = min(o~(C): C ~ ~k-1) 

satisfying/3k_ ~ ~< min f ( K )  <~ ak_ ~. We now describe the four-stage "branch and 
banish, bound and banish" iterative step, based on the presentation in [6]. 

1. Branch: Select a subset 3~k of ~k-1 and finitely recover each member  of ~k" 
Let  ~ be the set of all newly formed cover sets. 

2. Banish: Delete  C E ~ if it lies outside K, or if it is known that min f ( K )  

cannot occur over C. Let  ~ be the collection of cover sets remaining. 
3. Bound:  Assign to each C E cr k which is known to be feasible bounds /3(C)  

and a ( C )  satisfying 

f l (C)  <~ min f ( C  tq K) ~< ol(C) = rain f ( S c )  

and to each uncertain C E ~ a bound /3(C) satisfying /3(C)<~min f ( C ) .  

Here  S c is the set of evaluation points in C fq K. We assume tha t /3 (C)  i> 
f l (B)  if C C_ B ~ %-1" 

t t 

Let  /3 k =min{/3(C)"  C E  qgk} and a k =min{ce(C):  C E  ~k},  the overall 
bounds, and if a k < ~ let x k in K be such that f ( x  k) = a k. 

4. Banish: Delete all C E ~ not containing x k which are fathomed, that is, 
a k ~</3(C). Let  ~g be the collection of cover sets remaining. 
If a k - flk <<" e, then stop, else re-run the iterative step. 

At  this s tage, /3 k ~< min f ( K )  <~ a~. 

R E M A R K S .  (i) The cycling of the steps, placing "fathoming" last instead of 
first, does not  alter the algorithm, and suits our purpose in the next section. It 
has, however,  obliged us to add the phrase "not  containing x k'' in Step 4 in order  
to exclude the possibility that all C's are fathomed. 

(ii) We have assumed compactness throughout to ensure that the minima exist. 
This can be generalised to non-compact C o and infima, as in [6]. 

4.2. MULTIDIMENSIONAL BISECTION WITHIN THE BRANCH AND BOUND 
FRAMEWORK 

We now show that the multidimensional bisection algorithm, Algorithm 2.1, falls 
into this new branch and bound framework. 

The natural domains K for MB algorithms are the standard domains described 
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Fig. 8. The initial feasible set K, contained in the relaxed feasible set C o, Shown 
here is the most conservative case, where all initial evaluations are equal. 
Variation in the function evaluations causes shrinkage of the initial cover set, C o . 

in Definition 2.1(5). The algorithm begins by placing the minimum over such a K 

in a simplex Co, the top of the initial simplex bracket ,  projected onto the domain,  
R". This simplex contains the region of K still of interest. Figure 8 shows the 

situation for n = 2. Evaluations of f at the dual vertices Sco = { v l , . . . ,  v n + 1 } of K 
(see [9], w provide a simplex in R n+l with top at height a 0 = min{f(v l )  : i =  

1 , . . . ,  n + 1}, and base at height/30 ~< rain f (K) .  Here  a 0 is always finite, so we 
immediate ly  have an iteration point x 0 E K for which f (x  ~ = a o. It  is one of the 
vertices v i for which the evaluation is least. 

At  the start  of  the kth iteration a global minimum over K is bracketed in a 
finite set of similar simplexes. The projection of these simplex tops onto the 
domain  forms the cover c~k_ 1. For  the simplex in the system with projected top C, 

/3(C) equal to the level of the simplex base, and a(C)  = min f (Sc)  (where S c is 
the set of evaluation points in C M K)  form lower and upper  bounds for 
min f ( C  fq K).  A proper ty  of the algorithm is that for all feasible C E cgg_~ we 
h a v e / 3 ( C )  <~ min f ( C  f) K)  <~ a(C) .  The first inequality follows since over  K the 
graph of f remains on or above the sloping facets of the simplexes in the system. 

We now describe how the deepest point MB iteration slots into the four stages 
of the branch and bound iterative step. 

1. Branch: Select the C @ (~k-1 corresponding to the simplex which is to be  
reduced,  and any other cover sets influenced by elimination in this iteration. 
These sets constitute ~k. The deepest  point evaluation then yields a cover of C 
which will be one of three types, according as the evaluation is above,  on or 
below the simplex top. Figure 9(a)-(c) shows these cases when n = 2. Cover  
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\ 
(a) (b) (c) 

(d) 

Fig. 9. The refinements of the cover set C when the evaluation over the base is 
(a) above the top, (b) on the top, and (c) below the top. In cases (b) and (c) the 
refinement is a cover rather than a partition. Case (d) shows a cover set C, 
associated with the elimination phase, recovered using two sets. 

sets influenced by elimination will have their associated n + 1 dimensional 

simplexes truncated,  so give rise to the recovering shown in Figure 9(d). This 

comprises two Sets, shown shaded and unshaded. 
2. Banish: The shaded regions in Figure 9, in (a) and (c), or their analogues for 

larger n, can now be deleted. This is possible since it is known that min f (K)  
cannot  occur over  these regions (see w System reduction). This leaves us 
with ~ .  The geometry  of multidimensional bisection would allow us to 

r emove  cover sets C in c~0',K. In practice we do not expend the effort,  since 
Assumpt ion  2.1 ensures that such sets are eventually fa thomed in Step 4. 

3. Bound: We assign to each new simplex C in the cover the level of  the base, 

fl(C). In MB this choice of fi(C) ensures that fl(C) <- min f (C  N K) for each 
feasible set C, whether  or not we know it to be feasible. That  this inequality 
may  not hold for infeasible C is not a concern, since infeasible cover sets for 
which it does not hold will be more  quickly fa thomed in Step 4, a desirable 
outcome.  With the annular shaded region in (d) we associate a/3 value of ak, 

the level of the lowest evaluation to date. We know that min f (K)  cannot 
occur on such a C, so this ensures that it is fa thomed in Step 4. To each cover 
set we can assign a(C) = min f (Sc)  , where S c is the set of evaluation points in 
C n K. Certainly it follows that min f (C  n K) <~ a(C). The evaluation point x k 
in K is chosen such that f (x  k) = a~. 
These three steps togetb.er correspond to the reduction step, ~ .  They are 
viewed simultaneously in MB, but can be linearly ordered in the way just 
described. 
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4. Banish: This fourth step corresponds to the elimination step, ~. All shaded 
regions of the type shown in Figure 9(d) are removed. 

This completes the demonstration that Algorithm 2.1 with the deepest point 
strategy is an example of the new framework. A fine point should be acknow- 
ledged here: any (necessarily singleton) C # {x k} for which/3(C) = a k would be 
eliminated in Step 4. Thus we are capturing a very slight modification of MB. The 
algorithm just described, however, still is such that f(x k) $ a. 

Incorporation of spherical reduction would alter only the refinement of ~k" 
Any complete reduction, or a reduction strategy which involved more than a 
single evaluation (such as that in the next section) would necessitate overlaying 
the covers generated by reduction and elimination. These algorithms still follow 
the pattern of the branch and bound format. 

A final remark: we have shown in this section that MB can be expressed in 
branch and bound language. This language distinguishes the domain R n and the 
range R. Our intuition is that a more natural framework for MB is waiting to be 
phrased in R n+l. 

5. Convergence 

We turn now to the convergence of the multidimensional bisection algorithms. We 
review the convergence of the branch and bound algorithm presented in w and 
show how this relates to the convergence of the MB algorithm with the deepest 
point reduction strategy. We then investigate a stronger reduction strategy, 
initially proposed for univariate functions by Basso. This strategy ensures that the 
localisation converges to the set of global minimisers. 

For the a k and/3k of w evidently % is non-increasing and/3k non-decreasing. 
Thus lira % = a and lim/3~ =/3 necessarily exist, and/3 ~< min f (K)  <~ a. Follow- 
ing Horst and Tuy we say that an infinite procedure (one for which ak #/3k for all 
k) converges if a t - / 3  k--~ O, as k--~ % whence 

a = lim f (x  k) =/3 = min f ( K ) .  
k 

We now restate in appropriate form the convergence conditions for an infinite 
branch and bound procedure, given in their original form in ([6], pp. 123-125). 
These will ensure that Ot k - -  /3k  ~ O. 

DEFINITIONS. 1. A bounding procedure is termed consistent if at the start of 
each iteration every non-degenerate cover set can be refined, and any decreasing 
sequence Ckq coming from successively refined covers satisfies 

lim(%q -/3(C,q)) --- 0. 

2. A selection procedure is termed complete if for every C E U ~  1 D~= u cg k we 
have min f (C f3 K) >I a. 
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3. A selection procedure is termed bound improving if, for each k, there exists 
an l/> k for which 

argmin{fl(C): C E  ~g} A ~ l # O .  

That is, at each iteration one covering element where flk occurred is later selected 
for refinement. 

The following theorem, which we restate from ([6], pp. 124-127) then follows, 
with the proofs as in [6]. 

T H E O R E M  5.1. In an infinite branch and bound procedure, suppose that the 
bounding operation is consistent. It follows that 
(i) if the selection is complete, then 

(a) a = min f (K) ,  
(b) if f is continuous, then every accumulation point x of {x k} is such that 

f(x) = min f (K).  
(ii) if the selection is bound improving, then the procedure is convergent, so 

a = min f (K)  = f t .  

We now use this theorem to discuss the convergence of MB with deepest point 
reduction. Condition (C1) discussed in [9] required that all deepest simplexes in 
the system at the end of each MB iteration be eventually reduced. This is readily 
shown to be equivalent to the bound improving condition. For MB, a selection 
procedure which is bound improving also is such that the bounding procedure is 
consistent. This is shown in ([9], Theorem 4.1(i)). The key to this is the variation 
reducing result ([9], Lemma 4.1). When the bounding in the algorithm is 
consistent, the selection is complete ([6], p. 127). In [9] the location of the least 
evaluation to date is chosen as the iteration point, x ~. Assumption 2.1 ensures 
that eventually all such points are feasible, so that the accumulation points of this 
sequence coincide with those of the sequence of least feasible evaluation points, 
used in w It follows from Theorem 5.1 that MB, with the deepest point 
strategy, is "range" convergent, or f(xg)--~ min f (K).  

It was pointed out in [2], however, that the deepest point reduction strategy 
does not ensure "domain" convergence of the algorithm. We clarify this state- 
ment using the following notation. Denote by 

(i) A, the accumulation points of the iteration points, 
(ii) E, the points in K where min f (K)  is realised, 

(iii) L=, the set Ak= 0 L k, where Lk = U{C: C E  cCk} is the "localisation" at 
the kth iteration. 

For a consistent and bound improving MB algorithm we have A fi E fi L~. The 
first inclusion follows from Theorem 5.1 or ([9], Theorem 4.1(iii)) and the second 
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~ . . . . .  ~ . . . . . .  x 

Fig. 10. For the f shown, the solution set E = {1, 5}. The Piyavskii-Shubert 
algorithm has accumulation points A = (1} and final localisation L= = {1, 5, 7}, 
showing that in general equality is not the case for the inclusions A C E C L=. A 
typical system is shaded in the figure. 

from ([9], Proposition 4.1). We conclude the paper by finding conditions under 
which we have domain convergence, that is, A = E- -  L=. 

The function pictured in Figure 10, adapted from Basso, illustrates that for the 
deepest point algorithm we cannot guarantee equality in the inclusions, A C E C 
L=. A typical system is sketched over the function. Iteration points stay in the 
neighbourhood of x = 1, with the points ( 5 , - 1 )  and ( 7 , - 1 )  remaining in all 
systems. Note that 5 ~ E but is not an accumulation point of the iteration points, 
and 7 E L= but is not in E. Thus both inclusions are proper. 

The central result in ([2], Theorem 2 and Corollary 2) shows that if the deepest 
point algorithm is modified, and in Basso's terminology, a block-sequential 
reduction strategy is used, then A = E = Lo~. We now extend Basso's work to 
show that the MB algorithm, in all four forms described in w and equipped with 
block-sequential reduction, guarantees that the localisations converge to the 
solution set E. In block-sequential reduction the deepest point in each connected 
component of the localisation is evaluated in each iteration. We prove the 
following: 

T H E O R E M  5.2. For the multidimensional bisection algorithm, with block- 
sequential reduction and any combination o f  complete and spherical reduction, 
then A = E = L~. 

Proof. Block-sequential reduction is certainly bound-improving, so it follows as 
before that A C E  C L~. Hence it suffices to take x @ Lo~ and show that x ~ A. 

From Theorem 5.1 we know that a k $ a and /3 k 1' a,  where a = rain f ( K ) .  
Thus the only point over x eventually remaining in the bracket is (x, a) .  We 
consider two cases. 

Case 1 : (x, a)  is eventually only in simplexes with apex at the point (x, a) .  
Since a k $ a as k - * ~ ,  eventually (x, a ) l i e s  in an isolated system simplex, of 
variation as small as we please. If f (x)  > a, an evaluation at x, ensured by the 
assumption of block-sequential reduction, would remove (x, a)  from the system. 
Since x E L= this provides a contradiction so f (x)  -- a,  and x C E. It is also evident 
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that eventually the system must include the degenerate simplex {(x, a)}.  Block 
sequential reduction ensures that this isolated simplex will be evaluated in every 
later full iteration. Hence x E A. 

Case 2: (x,  a )  is always in some simplex with apex at height less than a. 
Since/3 k increases to a,  (x, a )  must lie in a strictly nested sequence of simplexes, 
Tk = T(Xk, Yk, hk) ,  as the algorithm progresses. Note that h k must decrease to 
zero. 

For  incomplete reduction, with or without spherical reduction, any raising of 
the apex of T k must occur through an evaluation at x k. Thus x C A. 

For  complete reduction, with or without spherical reduction, the apex of T k can 
be raised through an evaluation at a point other than x k. We now show, however,  
that given a neighbourhood U of x, and for Tk'S with projected top inside U, 
there can be at most finitely many evaluations outside U which raise the level of 
these simplexes. Thus x E A. 

Suppose that {zl} is a sequence of evaluation points outside U, each of which 
raises the level of one of these simplexes. Then there exists an e > 0 such that 

f ( z t )  exceeds a + �9 for each l. Since Co\U is compact, the sequence of evaluation 
points {z~} has an accumulation point, z. Since f is continuous, f ( z )  > a. But 
z E A C_ E, so f ( z )  = a,  a contradiction. This completes the proof. 

R E M A R K S .  (i) In trials of the algorithms using deepest point reduction, we 
have noted the occurrence of points of the type occurring at x = 7 in the example 
of Figure 10. With block-sequential reduction such a point would disappear in an 
early iteration. The result of Theorem 5.2 suggests that every so often a 
block-sequential iteration should be run to remove such stray points. 

(ii) The  proof  of Theorem 5.2 reveals that the behaviour exhibited in Figure 10 
at x = 1 and x = 5 illustrates the only two ways in which a point can remain 
forever  in the system. 

Appendix 1: Algorithm Details 

The initial system is described in the following definition. 

D E F I N I T I O N  A. 1. For  H = c + rU, a standard domain in R n, and function f in 

L ( M ) ,  the initial system S O = (3--0, ao) with 3 o = { T O = T(xo, Yo, ho)} is given by 

n + l  1 
x o = c + M ( n  + 1) k=lE ( f (Vk )  - -  m ) u  k , 

n + l  

1 ~ f (Vk)  -- M n r ,  
Y o -  n + l  k=l 

n + l  

h o = M n r -  1 ~ ( f ( v k ) - m )  
n + l  k=a 

a o = ( c -  ru,, m ) ,  
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with v k = c - rUk, k = 1 , . . . ,  n + 1, the dual vertices of H,  m = mink{f(Vk) }, 
l = an index associated with the lowest evaluation, that is, f(vz) = m. 

The details of simplex reduction are given in the next definition. 

D E F I N I T I O N  A.2. Let T(x, y, h) be a standard simplex. Two cases occur: 
1. Upper reduction (when h <~f(x) - y). If h <~f(x) - y <<- (n + 1)h, then the 
reduction of T is 

[ f ( x ) - y  
J-= T X+ M ( n + l )  Uk, Y + - -  

k = l  . . . . .  n + l } ,  

f ( x ) - y  h - - - 1  )] 
n + l  ' n + l  ( f ( x ) - y  : 

else if (n + 1)h < f i x )  - y, then 9- is the empty set. 
2. Lower reduction (when f (x)  - y < h). If 0 ~ f (x)  - y < h, then the reduction 

of T is 

{ [ f ( x ) - y  n n _ y ) ]  
i f =  T x + M(n 5 1 )  uk' f ( x ) -  ~ ( f ( x ) -  y), ~ ( f (x )  : 

k = l  . . . . .  n + l } ,  

else if f (x)  - y < 0, then ~- is the empty set. 

The key to spherical reduction is the acceleration function A which relates the 
radius of S to the radius of D, as shown in Figure 5. We standardise by taking T in 
Figure 5 to have unit radius, whence A will be a function from [0, 1] to [0, n]. The 
following theorem, whose proof was given in ([9], Theorem 3.1), describes A. 

Theorem A.1. Let T be a regular n-simplex of  unit radius and S be an n-sphere 
with the same centre, and radius r, 0 <~ r <- 1. Then the radius, A(r) ,  of  the largest 
regular n-simplex, D, dually oriented to T, sharing the common centre and such 
that T fq D C S, is given by the piecewise formula, with n parts: 

A(r)  = 

r , 

maximum value of  A 
on previous interval 

maximum value of  A 
on previous interval 

Vr  2 -- sin 2 On, i 
+ 

n IIj=i+ 1 tan 0j,i 

~/r2 _ sin 2 0,, 1 
+ 

r l  

IIj= 2 tan 0j, 1 

for 0~< r ~ sin 0., ._1, 

for sin On, i <~ r <- sin 0~,i-1 , 

for sin On, 1 ~ r ~ 1 

where O],k, for j >i k, is the angle between the vertex to centroid line, and vertex to 
centroid of  a k-dimensional face line, in a j-simplex. 
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T h e  acce le ra ted  u p p e r  reduc t ion  p r o c e d u r e  is then  given in the fol lowing defini- 

t ion.  This  rep laces  (1) in Def ini t ion A.2 .  

Le t  T(x, y, h) be a s tandard  s implex.  I f  h <~ f(x) - y <~ 2h,  

1 - y) ]  : n + 1 (F(x) J 

D E F I N I T I O N  A.3 .  
t hen  the  u p p e r  reduc t ion  of  this s implex is 

{ [ F ( x ) - y  F ( x ) - y  
3-= T X + M(n + l ) uk, y + n q--1 , h - -  

k = 1 , . . .  , n + l } ,  

else if 2h < f ( x ) -  y, then  3- i s  the  e m p t y  set. H e r e  F(x)= hA[  f(x) - (y  + h ) ]  + 
h 

( y  + h) is the  effect ive eva lua t ion  o f f  at x. 

A p p e n d i x  2: Test  Funct ions  

F o r  each  of  the  five funct ions exp lo red  in w we presen t  the  funct ion f ,  the 

loca t ion  of  the  global  m i n i m a  x*,  the Lipschitz  cons tant  M which we adop ted ,  the  
initial feas ible  d o m a i n  H (in t e rms  of  the cent re  c and radius  r, see Def ini t ion 

2 .1(5))  and  the  var ia t ion  of  the initial s implex,  V 0. 

. Goldstein and Price ( G O L D P R )  

f(X'l, X'2) = [1 + (xx + x z + 1)2(19 - 14x x + 3x~ - 14x 2 + 6xlx2+ 3xzZ)]. 

[30 + (2x I - 3x2)2(18 - 32xa + 12x 2 + 48x 2 - 36xxx 2 + 27x~)] /6  

t 
w h e r e  x I = 4xa - 2, x 2 = 4x '  2 - 2 and 6 = 1,015,000. T h e n  x* = 
(0.5000, 0.2500, 0.0000); M = 50; c = (0.5, 0.5),  r = 0.7098; V 0 = 70.3. O u r  ini- 
tial d o m a i n  cuts the  corners  f rom [0, 1] x [0, 1] in o rde r  to avoid a second 
m i n i m u m .  

. Branin ( R C O S )  

f(x'l, x'2) = [a(x  2 - bxZx + C X  1 - -  d)  2 @ e(1 - f )  cos X 1 -[- e]/g 

where  a = 1, b = 5 .1/ (4~-2) ,  c = 5 / ~ ,  d = 6, e = 10, f =  1/(8~r) ,  g = 308.1 and  

x 1 = 15x'  1 - 5, x2 = 15x'2. The re  are th ree  global  min ima ,  at 
(0.5428, 0.1517, 0.0013),  (0.1239, 0.8183, 0.0013) and (0.9617, 0.1650, 0.0013),  

and  M = 10; c = (0.5, 0.5) ,  r = 0.7887; V 0--  15.63. H e r e  H is the  smal les t  
hexagon  conta in ing [0, 1] • [0, 1]. 

. Mladineo  ( F U N C T 2 )  

f (x l ,  x2) = - [ s i n ( 4 x  I + 1) + 2 sin(6x a + 2 ) ] .  

Fo r  the  hexagona l  initial doma in  we  use there  are  two global  min ima ,  at  
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( 0 . 1 4 2 7 , 0 . 9 7 5 9 , - 3 . 0 0 0 0 )  and ( 0 . 1 4 2 7 , - 0 . 0 7 1 5 , - 3 . 0 0 0 ) .  A l s o  M = 1 2 . 6 5 ;  

c = (0 .5 ,  0 .5 ) ,  r = 0.7887; V 0 = 19.24. 
W e  n o w  define a class of  functions on which  the type  of  a lgori thm w e  are 

using thrives.  T h e y  have  the appearance  of  down-under  mounta in  ranges,  and 

w e r e  sugges ted  by recent  w o r k  o f  Mladineo .  For i = 1 , . . . ,  m ,  let  Mg be  a 

pos i t ive  real number ,  and c i be  a point  in R n. Def ine  

f (x )  = m i n { - M / e x p ( - I I x  - c~l[): i = 1 , . . . ,  m }  on R n . 

T h e n  x* = (ci0, -M/0), where i 0 is such that Mi0 = max(M~:  i = 1 , . . . ,  m } .  

. Mladineo(2 ,  3).  T w o  variables  and three inverted peaks .  

W e  c h o o s e  n = 2,  m = 3 and let c1, c 2 and c 3 be ( - 0 . 5 ,  - 0 . 5 ) ,  (0 .6 ,  - 0 . 4 )  and 
(0 ,0 .8 )  respect ively ,  with M i = V T ,  for  i -=1 ,  2, 3. T h e n  x* = (0.8000, 

- 1 . 7 3 2 1 ) ;  M = X/3; c = (0, 0), r = 1; V 0 = 3.435. 

5. Mladineo(4 ,  3) .  Four  variables  and three inverted peaks .  

W e  c h o o s e  n = 4, m = 3 and let c~, c 2 and c 3 be  0 .7u  I + 0 .5u  2 + 0 .6u  3 + 0 .8u  4, 

- 0 . 6 u  I - 0 . 7u  2 - 0 .8u  3 + 0 .5u  4 and 0 .8u  5 respect ive ly ,  with M i = X/i, for i = 1, 
2,  3. H e r e  u l , . . . ,  u 5 are the direct ions  in R n defining the vert ices  of  the 

s implex  top ,  see  w Then  x* = (0,  0, 0, 0 .8000,  - 1 . 7 3 2 1 ) ;  M = X/-3; c = 

( 0 , 0 , 0 , 0 ) ,  r = l ;  V0 = 6.897. 
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